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Abstract  
In this paper, the set nitrogenous bases on a single 

strand can be more than topological space, we have 

obtained some of topological properties. Then we 

created a relationship(map) between the 

nitrogenous bases on the first strand of DNA to the 

nitrogenous bases on other strand, and we showed 

topological properties of this map. Then we 

investigated the aspect, which is that one turns of 

DNA of simple circular type homeomorphism 

segment I=[0, 1]. The perfectly circular DNA 

homeomorphism I.  

Keywords: topology, biology, DNA. 
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I. Introduction 
A typical DNA molecule consists of two 

complementary polynucleotide chains that are 

multiply interwound [1], forming a double helix. In 

the prevailing conformation, called B-DNA, this is 

a right handed helix with a period of approximately 

10.5 base pairs (bp) per turn at physiological 

condition. The features that distinguish B-DNA 

from other forms are location of the base paris on 

the helix axis, the near-perpendicular orientation of 

the base pairs relative to the helix axis and distinct 

major and minor grooves (the former in particular 

allowing easy access to the bases). Some of the 

helical parameters B-form and other forms of DNA 

[2] . 

 The helical repeat (base pairs per turn) of 

maxed-sequence B-form DNA has been determined 

by a variety of experimental methods and has been 

found to be clse to 10.5 bp/turn; this value depends 

on the solution conditions, but is often taken as an 

average for B-DNA [3]. A number of other 

parameters are required for a complete description 

of the conformation of the double helix.  In 1980 

the structure of B-form DNA molecule was 

analyses at atomic resolution using X-ray 

diffraction of single crystal [4]. The molecule used 

in these studies was the dodecamer 

d(CGCGAATTCGCG), which is self-

complementary (i.e. two molecules can base pair 

with each other by hydrogen bonding and forms a 

double helix of the type suggested by Watson and 

Crick [5]. Although the overall features of the 

dodecamer structure conform closely to those 

expected of B-form DNA, the molecule shows 

local sequence- dependent variation [6]. For 

example, the distance between base pairs varies 

from 0.314 to 0.356 nm, the average being about 

0.33 nm. the DNA base pairs are not all 

perpendicular to the helix axis and show propeller 

twist where the purine. 

Genetic information is carried in the linear 

sequence of nucleotides in DNA [7]. Each 

molecule of DNA is double helix formed from two 

complementary strands of nucleotides held together 

by hydrogen bounds between G-C and A-T base 

pairs. Linking number, writhe and twist: the 

linkage equation [9]. The linking number Lk for a 

covalently closed circular DNA molecule is the 

number of times one strand crosses the other. For a 

relaxed molecule the Lk can be referred to as 𝐿𝑘0. 

Lk is a topological property of DNA[10].  

 Lk can be expressed as the algebraic sum 

of two geometric properties, twist (Tw) and writhe 

(Wr). Twist refers to the manner in which one 

strand winds around the second. Writhe refers to 

the non-planarity of the DNA axis[11].  

Lk = Tw + Wr 

For relaxed DNA, Wr = 0; or Lk = Tw. That is, 

twist is equal to the number of turns between the 

Watson and Crick strands[12]. 

However, in supercoiled DNA, Lk is not equal to 

Tw, since Wr is no longer non-zero imagine that 

you break the strand in a relaxed molecule, and 

reseal it after taking out 'n' turns (see Fig. 1). The 

DNA is now under-wound or negatively 

supercoiled. As a result, the tendency of the axis is 

to be non-planar [13]. 

 Let us now imagine that by some means, 

we counteract this force, and keep the axis planar. 

Hence we impose zero writhe in the molecule as 

shown. This is one extreme way of accommodating 

the torsional stress [14]. In the other extreme, we 
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let the stress to be counteracted entirely by coiling 

(non-planarity) of the axis, that is, entirely by 

writhe [15]. In reality, supercoiled DNA consists of 

all possible dynamic conformations ranging from 

the one shown at the left (no writhe) to that shown 

at the right (no change in twist). Or, supercoiling 

which is a change in Lk, can be partitioned into Tw 

and Wr in amyriad ways. Let us illustrate 

supercoiling with a simple example as follows. 

Imagine a relaxed DNA circle with a 1000 bp. We 

assume that there are 10 bp per every turn of DNA. 

Or this molecule contains a 100 turns, or its 𝐿𝑘0 =
100. 
Lk = Tw + Wr; 

In our relaxed molecule, Wr = 0. 

𝐿𝑘0 = 100 = 𝑇𝑤 + 0 

Let us remove 20 turns from this molecule by 

breaking a strand and resealing it. Now there are 

only 80 turns in this molecule, or Lk = 80.  

Lk = 80 = Tw + Wr. 

If we force the axis to be planar, thus keeping Wr = 

0. 

80 = Tw + 0  

This twist is now 80, and therefore the pith of the 

helix changes it is no longer 10 bp per turn, rather 

1000/80 or 12.5 bp per turn. This is the case 

illustrated in Fig. 1 at the left now, let us keep the 

twist the same (100 turn; 10 bp per turn), and 

partition the negative supercoiling entirely into 

writhe[16].  

 

II. Topological space 
Definition  1.1.1  A topological space to be a non-

empty set ϰ and a collection ℑ  of sets in  ϰ. The 

collection ℑ will serve as the topology of   ϰ. In 

order that it be sensible to regard the sets in  ℑ as 

the 'open sets 'of ϰ we require that   ℑsatisfy the 

conclusions of theorem 

(i) ∅ ∈ ℑ , 𝑋 ∈ ℑ . 

(ii) Any union of sets in ℑ is in  ℑ . 

(iii) Any finite intersection of sets in  ℑ is in ℑ 

. [book2] 

Remark.   A space X with a topology ℑ is called a 

topological space. 

Definition 2.1.2. A space X with topologyℑ is 

called Hausdorff if for any 𝑥, 𝑦 ∈  𝑋 with 𝑥 ≠  𝑦, 

there exist two open sets𝑈, 𝑉 ∈  ℑ and𝑥 ∈  𝑈,
𝑦 ∈   𝑉 such that 𝑈 ∩  𝑉 =  ∅. 
Remark. A Hausdorff space is a space where we 

can separate points by open sets [17]. 

a. Continuity And Continuous Function 

Definition 2.2.1. Given two topological spaces X, Y 

with topologiesℑ𝑥 and  ℑ𝑦respectively, let 𝑓 ∶

 𝑋−→  𝑌 be a map. We say f is continuous if for 

any𝑉 ∈  ℑ𝑦,𝑓−1  (𝑉 )  ∈  ℑ𝑥 . 

Definition 2.2.2. Let 𝑓 ∶  𝑋 −→  𝑌 . We say f is 

continuous at 𝑥 ∈  𝑋 if for every open set 𝑉in 𝑌 

with 𝑓 (𝑥)  ∈  𝑉, there exists an open set U in X 

such that 𝑓 (𝑈)  ⊂  𝑉. 

Proposition 2.2.3.A function 𝑓 ∶  𝑋 −→  𝑌 is 

continuous if and only if it is continuous at every 

point in 𝑋. 

Proof. If the function f is continuous in X, then it is 

obvious that such function is continuous at every 

point in X.  

Assume f is continuous at every point x ∈ X, so for 

every point x with f(x) ∈ V where V is an open set 

in Y we have 𝑓(𝑈𝑥)  ⊂  𝑉 with 𝑥 ∈  𝑈𝑥. Thus 

𝑈𝑥  ⊂  𝑓  −1(𝑉 ), we can write 

𝑓  −1(𝑉 ) = ⋃ 𝑈𝑥

𝑥∈ 𝑓  −1(𝑉 )

 

since the chosen open set V is arbitrary, we see that 

the function f is continuous in X. □ 

 Definition 2.2.4. A continuous bijective map f : X 

−→ Y is called a homeomorphism if 

𝑓−1 ∶  𝑌 −→  𝑋 is continuous as well.  

Remark. If there exists a homeomorphism between 

X and Y, we say X and Y are homeomorphic. 

 

2.2 Connected and Path-Connected 
Definition 2.2.1. Given a topological space X. We 

say X is connected if whenever X = U ∪ V where U 

and V are disjoint open sets, we have {U, V}={∅, 

X}. If there exist other disjoint open sets {U, V}such 

that X = U ∪ V, then we call U, V the separation of 

X. 

Remark. X is connected if and only if the only 

separation of X is {∅, X}.  

Proposition 2.3.2. A space X is connected if and 

only if the only sets that are both open and closed 

are ∅ and X.  

Proof. Suppose X is connected and U is a subset of 

X which is both closed and open but not ∅ and X, 

so V = X − U is both open and closed but not ∅ and 

X. Thus {U, V} provides a separation of X. Here is 

a contradiction, so there must be no such U and V.  

The reverse implication is trivial.                                                                                                  

□ 

Definition 2.3.3. Given a continuous map 𝑓 ∶
 [𝑎, 𝑏] −→ 𝑋 and 𝑥, 𝑦 ∈  𝑋 where 𝑋 is a 

topological space. Then f is called a path from 𝑥 

to 𝑦 if 𝑓 (𝑎)  =  𝑥, 𝑓 (𝑏)  =  𝑦. A space 𝑋 is called 

path-connected if given any two points 𝑥, 𝑦 ∈  𝑋, 
there exists a path between 𝑥 and 𝑦 
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2.3 Compactness 

Definition 2.4.1 Let Xbe a space and {𝑈𝑖} a 

collection of open sets. {𝑈𝑖} is called an open cover 

of 𝑋 if 𝑋 =  ⋃ 𝑈𝑖𝑖∈𝐼 . The space X is compact if 

every open cover contains a finite subcover (i.e. 𝑈1, 

𝑈2, ...,𝑈𝑛∈{𝑈𝑖}such that𝑋 = 𝑈1 ∪ 𝑈2 ∪ ...∪ 𝑈𝑛) 

[18]. 

Proposition 2.4.2. Every closed subset of a 

compact space is compact.  

Proof: 

Given a compact set X, suppose Y is a closed subset 

of X. Let {𝑈𝑖} be any open cover of Y . Let  𝑈′ =
 {𝑈𝑖}, {𝑋 −  𝑌 }, we can tell that 𝑈′ is an open 

cover of X so it has finite subcover 𝑈1
′, 𝑈2

′, ...,𝑈𝑛
′ 

. If {𝑋 −  𝑌 } is among any 𝑈𝑖
′, throw them out. 

Hence Y is compact. 

Proposition 2.4.3. Every compact subset of a 

Hausdorff space is closed.  

Proposition 2.4.4. Let f : X −→ Y be a continuous 

map. If X is compact, then f(X) is compact as well.   

 

2.4 Quotient Map and Quotient Space  

 

Definition 2.5.1. Given two topological spaces X 

and Y. Let 𝑓 ∶  𝑋 →  𝑌be a surjective map. We call 

f a quotient map provided that 𝑈 ∈ 𝑇𝑌 if and only 

if 𝑓−1 (𝑈)  ∈ 𝑇𝑋 .  

 

Definition 2.5.2.A partition A of a set X is a 

collection of subsets {𝑈𝑖}𝑖∈𝐼, such that 

 

𝑋 = ⋃ 𝑈𝑖𝑖∈𝐼  and 𝑈𝑖 ∩ 𝑈𝑗 = ∅ if 𝑖 ≠ 𝑗. 

Definition 1.5.3. Let X be a topological space and 

A a partition of X. Let 𝑓 ∶  𝑋 →  𝑌be a surjective 

map provided that 𝑓(𝑥𝑖) = 𝑈𝑖 where 𝑈𝑖 is an 

element of A which uniquely contains𝑥𝑖. If we let 

𝑇𝐴 denote the quotient topology on A arising from 

the quotient map f, then we call A the quotient 

space of X with respect to A. 

 

III. Knot Theory 
A knot is an embedding of the circle 𝑆1 into 𝑅3. 

Two knots are equivalent if there exists an ambient 

isotopy between them.  

Proposition: The two strand of close-circular DNA 

molecule are knots are equivalent because ambient 

isotopy between them. It is clear that by definition 

knots.  

3.1  Reidemeister Moves  

There are certain continuous deformations which 

leave the topological properties of knots invariant. 

These are called the Reidemeister moves. 

. 

Definition 3.1.1. The Reidemeister moves are local continuous deformations of knots that appear as such:  

 
Figure 1: The equivalence relation on diagrams generated by all Reidemeister moves is called an ambient 

isotopy. 

 

The equivalence relation on diagrams generated by 

all Reidemeister moves is called an ambient 

isotopy.  

In principle, because of Reidemeister’s Theorem 

(which states that two strand of B-DNA are 

equivalent because their diagrams can be connected 

by a sequence of Reidemeister moves), we can 

classify all (B-DNA) by the diagrams generated by 

any sequence of Redemeister moves on a given 

knot.  Remember that genetic information is carried 

in the linear sequence of nucleotides in DNA. Each 

molecule of DNA is double helix formed from two 

complementary strands of nucleotides held together 

by hydrogen bounds between G-C and A-T base 

pairs [19]. 

Lemma 1: 

 if 𝑋 = {𝐴, 𝑇, 𝐶, 𝐺}then there exist a topology ℑon 

X,   such that ℑ = {∅, 𝑋, {𝐴, 𝑇}, {𝐺, 𝐶}}. 
proof:  

1) ∅, 𝑋 ∈ ℑ  
2) Any union of sets in ℑ is in  ℑ  

i. e. ( ∅ ∪  𝑋 = 𝑋 ∈ ℑ,   𝑋 ∪ {𝐴, 𝑇} = 𝑋
∈ ℑ,   𝑋 ∪ {𝐶, 𝐺} = 𝑋
∈ ℑ, {𝐴, 𝑇} ∪ {𝐺, 𝐶} = 𝑋
∈ ℑ, … 𝑒𝑡𝑐.  

 

3) Any finite intersection of sets in  ℑ is in ℑ. 
∅ ∩ 𝑋 = ∅ ∈  ℑ , {𝐴, 𝑇} ∩ {𝐺, 𝐶} = ∅ ∈ ℑ 

 

Propositions of topology ℑ 

I.ℑis not Hausdorf topology  
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𝐴 ≠ 𝑇there is no exist two open sets𝑈, 𝑉 ∈  ℑ 

and𝐴 ∈  𝑈, 𝐵 ∈   𝑉 such that 𝑈 ∩  𝑉 =  ∅. 
II. Let 𝑓: 𝑋 → 𝑋 such that  𝑓(𝐴) = 𝑇, 𝑓(𝑇) =
𝐴, 𝑓(𝐶) = 𝐺, 𝑓(𝐺) = 𝐶, then f  is continuous. 

Proof: 

𝑓−1({𝐴, 𝑇}) = {𝑇, 𝐴}. 

𝑓−1({𝐶, 𝐺}) = {𝐺, 𝐶}. 
𝑓−1(∅) = ∅. 
𝑓−1(𝑋) = 𝑋. 
f :is quotient map  

III. The mapf : X → X  is a homeomorphism. 

Proof: 

f  isclear continuous bijective map and  𝑓−1 ∶  𝑋 →
 𝑋 is continuous as well.by definition the end. 

VI. A topological space X is separation. 

Proof: 

{𝐴, 𝑇} ∪ {𝐶, 𝐺} = 𝑋 𝑎𝑛𝑑 {𝐴, 𝑇} ∩ {𝐶, 𝐺} = ∅ 

V. A topological space X is compact. 

Proof: {𝐴, 𝑇} ∪ {𝐺, 𝐶}is finite open cover of X for 

any open cover of X. 

IV. f (X) is compact by proposition (because X is 

finite set) 

-Now the B-DNA is a Reidemeister moves because 

the properties which is have it. 

Usually homeomorphic space is considered 

equivalent in topology. Since all knots 

homeomorphic to the unit circle, they are all 

homeomorphic to one another. Therefore, 

homeomorphism type is an uninteresting 

equivalence relation on knots and a rather unnatural 

one. The following topological criterion is a more 4 

appropriate equivalence relation on knots. [20]. 

 

Curves and continua 

 The focus our attention on 𝑅2 . we have 

seen that lines and circles separate 𝑅2 into distinct 

components. What can be said about other curve?  

 First, something needs to be said about 

curves in general.  

Definition  

A curve in𝑅2to be the image 𝑓(𝐼)of a compact 

interval I under a continuous function 𝑓: 𝐼 → 𝑅2. 
Definition  

Let 𝐼 = [0, 1] and let S be the square [0, 1] × [0, 1]. 
For each 𝑛 ∈ 𝑁, Hilbert constructed a continuous 

function 𝑓𝑛: 𝐼 → 𝑆. The curves 𝑓1, 𝑓2 and 𝑓3are 

illustrated a continuous in the diagram below 

The sequence 〈𝑓𝑛 〉 of function converges uniformly 

to continuous function 𝑓: 𝐼 → 𝑠. AS IS Evident 

from the construction, the curve 𝑓(𝐼) passes 

through every point of S i.e. 𝑓(𝐼) = 𝑆. We say that 

𝑓(𝐼) is a space-filling curve`.Simple curve . The 

shall say that a curve C is a simple arc if it is 

topologically equivalent to the compact interval [0, 

1]. This means that there exist a homeomorphism 

𝑓: [0,1] → 𝐶. A curve C will be called a Jorden 

curve (or simple ' closed ' curve) if it is 

topologically equivalent to the unit circle U in 𝑅2 

 

 
Figure 2: curve C will be called a Jorden curve 

 

Proposition  

Let C a relaxed B-DNA  is a simple curve then it is 

a topologically equivalent to a compact interval [0, 

1] this mean that there exist a homeomorphism 

𝑓: [0,1] → 𝐶  then C is Jorden curve U in𝑅2. 
Proof: 

Since B-DNA is circular ,then it is topologically 

equivalent to the unit circle U in 𝑅2. 

 

IV. Conclusions 
The set nitrogenous bases on a single 

strand can be more than topological space.They 

have obtained some of topological properties. Then 

we created a relation (map) between the 

nitrogenous bases on the first strand of DNA to the 

nitrogenous bases on other strand, and we showed 



 

 

International Journal of Engineering, Management and Humanities (IJEMH) 

   Volume 5, Issue 3, May.-June, 2024 pp: 227-233                         ISSN: 2584-2145 

    www.ijemh.com                 

                                      

 

 

 

 

 

                               www.ijemh.com                                                  Page 232 

topological properties of this map. The investigated 

the aspect, which is that one turns of DNA of 

simple circular type homeomorphism segment I=[0, 

1].Let C a relaxed B-DNA  is a simple curve then it 

is a topologically equivalent to a compact interval 

[0, 1] this mean that there exist a homeomorphism 

𝑓: [0,1] → 𝐶  then C is Jorden curve U in 𝑅2. 
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