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Abstract: A Fast ICA genetic neural network 

algorithm is proposed for fault identification in rolling 

bearings, combining the strengths of backpropagation 

(BP) and Fast Independent Component Analysis (Fast 

ICA). The method begins by applying Fast ICA to 

separate vibration signals into independent 

components, with each component representing 

fault-related energy. These energy values form a 

feature vector. A genetic algorithm then optimizes the 

initial weights and thresholds of the BP neural 

network, creating a genetic neural network for 

improved fault recognition. Experimental results 

show that this approach enhances the identification of 

multiple fault types in rolling bearings. 
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I. Introduction 
In practice, the vibration signals measured by 

sensors are typically mixed signals. To ensure the 

quality of diagnostic information and improve the 

accuracy of fault diagnosis, it is necessary to extract 

independent or relatively independent components 

from the signals and separate the actual mixed signals. 

Given the limitations of neural networks, such as large 

computational requirements, slow speed, and a 

tendency to fall into local minima, which hinder rapid 

fault diagnosis and identification of extracted features, 

a FastICA genetic neural network algorithm is 

proposed for fault identification. This method 

combines the advantages of the FastICA algorithm, 

including fast convergence, low computational 

complexity, and strong robustness, with the benefits 

of genetic neural networks, such as fast convergence 

and the absence of local error jumps. It ensures global 

convergence during the training process, improves 

fault identification capability and accuracy, enhances 

optimization ability, reduces error, and accelerates the 

speed of bearing fault diagnosis. 

II. Feature extraction of vibration signals by 

FastICA algorithm 
Blind Source Separation (BSS) is one of the 

most commonly used methods for separating mixed 

signals, with Independent Component Analysis (ICA) 

being one of the most effective approaches to solving 

BSS problems [1-4]. The key to applying the ICA 

algorithm lies in establishing a criterion for measuring 

the independence of the separation results and 

corresponding separation methods. This allows for the 

extraction of individual independent source signals 

from mixed signals, selecting the appropriate ICA 

separation method based on the established criterion 

for measuring the independence of the separation 

results. Currently, the Fast ICA algorithm is widely 

used [5-7]. 

Since each estimated independent component 𝑠(𝑡̂) 
contains a certain amount of information, the feature 

vector extraction is based on the energy characteristics 

of each estimated independent component 𝑠(𝑡̂): 
1. Perform Fast ICA separation on the original 

vibration signals of the rotating machinery to select N 

independent component estimates 𝑠(𝑡̂) that contain 

the primary fault information. 

2. Calculate the total energy of each independent 

component 𝑠(𝑡̂) estimate of the rotating machinery 

vibration signals: 

 
2

1
ˆ , 1,2,...,i niE s t dt i N




  (1) 

where s1niis the ith independent component. 

3. Construct an eigenvector with each independent 

component estimating the total energy Ei of 𝑠(𝑡̂) as 

an element: 
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4. The feature vector T is normalized so that 𝐸 =
(∑ |𝐸𝑖|

2𝑁
𝑖=1 )1/2and the normalized feature vector is: 
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III. Genetic Algorithm Optimization of BP 

Neural Networks 
The BP neural network has several drawbacks, 

including slow convergence speed, the inability to 

ensure whether the algorithm converges to the global 

minimum, and weak optimization capability [8]. This 

study employs a genetic algorithm to optimize the BP 

neural network, with the specific optimization process 

illustrated in Fig. 1. 

 

IV. Genetic Algorithm Optimization of BP 

Neural Networks 
4.1 Principles of the FastICA genetic neural network 

algorithm 

 

 
Fig.1 Genetic Algorithm to Optimize BP Network 

Process 

 

In conjunction with the Fast ICA separation 

algorithm, this paper proposes a genetic neural 

network algorithm based on Fast ICA. This method 

first applies the Fast ICA separation algorithm to 

estimate the noisy mixed signals 𝑠(𝑡), resulting in 

multiple independent component estimates 𝑠(𝑡̂)  of 

fully separated source signals. Secondly, a genetic 

algorithm is utilized to optimize the weights and 

thresholds of the BP neural network, yielding an 

optimized BP neural network. Finally, the normalized 

energy of the multiple independent component 

estimates 𝑠(𝑡̂) obtained from the Fast ICA separation 

of the rotating machinery mixed signals is used as 

input to the genetic neural network, applied in the 

training and prediction of the optimized BP network. 

This method ensures global convergence during the 

training process, enhancing fault identification 

capabilities and accuracy. Fig. 2 illustrates the 

schematic diagram of the Fast ICA genetic neural 

network algorithm, where 𝑒 is input variables and 𝑌 is 

output variables. 

 

 
Fig. 2 Principles of Negative Entropy Genetic Neural 

Network Algorithm 

 

4.2 Bearing fault diagnosis based on FastICA genetic 

neural network algorithm 

The paper collected fault signals from the 

rolling bearings of a double-suction centrifugal pump. 

The rolling bearing model is 6312, with a rotational 

speed of 1,480 r/min. One DH131 piezoelectric 

accelerometer was installed axially on the rolling 

bearing, while three DH187 piezoelectric 

accelerometers were installed radially (one on the top 

and two on the sides of the rolling bearing). 

 

Table. 1Training samples for faulty bearings 

Fault type E1 E2 E3 E4 E5 E6 E7 E8 E9 

Normal 0..01377 0.1791 0.0878 0.2142 0.0426 0.0897 0.0851 0.0597 0.0688 

Outer ring 0.0994 0.1578 0.1802 0.2470 0.1221 0.0951 0.0506 0.0227 0.0174 

Rollers 0.2589 0.2005 0.0487 0.0054 0.0224 0.0065 0.0893 0.2303 0.0862 

Inner ring 0.1541 0.2481 0.0824 0.0035 0.0324 0.0334 0.0379 0.0515 0.0906 

 

By extracting certain characteristic values of 

rolling bearing faults, four fault types—normal bearing, 

outer race fault, rolling element fault, and inner race 

fault—were used as training samples for the genetic 

neural network. Using the Fast Independent 

Component Analysis (Fast ICA) algorithm, the energy 

of each estimated independent component, denoted as 

E, was calculated for a subset of samples. This data 

was then used as training samples for the genetic 

neural network, as shown in Tab. 1. 

Based on the number of fault types and the 

genetic neural network, the number of hidden nodes 
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was determined. The structure of the genetic neural 

network was set as 9-5-4, with the weight and 

threshold values defined within the range of [−1, 1]. 

These weights and thresholds were converted to 

binary to reduce the time required for the genetic 

algorithm to find the global optimum. The population 

size for the genetic algorithm was defined as 20, with 

a maximum of 30 iterations. Fig. 3 illustrates the 

relationship between the number of iterations of the 

genetic algorithm and the overall error. 

As shown in Figure 3, the genetic algorithm 

found the global optimum by the 24th generation of 

the optimization process. Even with further genetic 

iterations, this value remained unchanged. At this 

point, the corresponding encoding string can be 

identified, and the binary codes on the encoding string 

can be converted to their corresponding decimal 

values for the neural network weights and thresholds. 

These weights and thresholds were then used as the 

initial weights and thresholds for the BP neural 

network, which was trained using the training samples. 

The training step was set to 100, with a learning rate 

of 0.01 and a target training error of 10-5. The training 

process, as shown in Fig. 4, was completed in just six 

steps. 

 

 

The trained network was tested with 

prediction samples, and the actual network outputs 

along with the expected outputs are presented in Tab. 

2. 

As shown in Tab. 2, the actual output values 

are close to the target output values. For Sample 1, the 

normal rolling bearing, the actual output value and the 

target value differ by 0.0013. For Sample 2, with an 

outer race fault, the difference between the actual 

output value and the target value is 0.0039. For 

Sample 3, with a rolling element fault, the actual 

output value and the target value differ by 0.0013. For 

Sample 4, with an inner race fault, the actual output 

value and the target value also differ by 0.0013. The 

errors between the actual output values and the target 

values for all samples indicate that the network has a 

high predictive accuracy. Therefore, the application of 

the proposed method to rolling bearing fault 

identification has enhanced its capability, reduced 

errors, and accelerated the diagnosis speed of rolling 

bearing faults. 

 

Fig. 3 Relationship between the number of iterations 

of a genetic algorithm and the overall error 

 
Fig. 4 Training of Genetic Neural Networks 

 

Table 2 Results of the diagnosis 

Input Real output Target output Fault type 

Sample 1 0.9987 0.0005 0.0005 0.0007 1 0 0 0 Normal 

Sample 2 0.0002 0.9961 0.0004 0.0009 0 1 0 0 Outer ring 

Sample 3 0.0001 0.0000 0.9987 0.0007 0 0 1 0 Rollers 

Sample 4 0.0001 0.0000 0.0002 0.9987 0 0 0 1 Inner ring 

 

V. Conclusions 
Using the FastICA-genetic neural network 

method for fault identification in rolling bearings 

offers the following advantages: 1) The FastICA 

separation algorithm is employed for feature 

extraction from fault signals, offering rapid 

convergence, low computational complexity, and 

strong robustness; 2) The genetic neural network 

exhibits fast convergence and avoids local error 

trapping, thus overcoming the neural network's 

tendency to get stuck in local minima, thereby 

enhancing fault identification capabilities and 

accuracy; 3) The FastICA-genetic neural network 

method performs effectively in fault diagnosis of 
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rolling bearings, providing a rapid and efficient 

discriminative approach for bearing fault diagnosis. 
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