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ABSTRACT: With the rapid development of 

intelligent mobile platforms such as unmanned 

aerial vehicles (UAVs) and autonomous vehicles, 

multi-agent systems are increasingly being applied 

in logistics, disaster relief, and other domains. This 

paper systematically investigates the core 

technologies of multi-agent path planning, with a 

focus on analyzing two mainstream approaches: 

centralized and distributed methods. Research 

indicates that centralized planning achieves global 

optimization through central control, making it 

suitable for high-precision scenarios despite its 

high computational complexity. In contrast, 

distributed planning relies on local decision-

making, offering better scalability but potentially 

converging to local optima. This research provides 

theoretical foundations and technical references for 

selecting path planning methods in multi-agent 

collaborative systems. 

KEYWORDS: Multi-agent systems, Multi-agent 

path planning, Centralized method, Distributed 

method. 

 

I. INTRODUCTION 

The rapid advancement of intelligent 

mobile platforms, including UAVs, autonomous 

vehicles, and industrial robots, has led to 

widespread applications of multi-agent 

collaborative systems in logistics [1], disaster 

response [2], military reconnaissance [3], and 

agricultural operations [4]. Multi-agent path 

planning and execution represent the core 

technologies enabling efficient operation of these 

systems, involving key processes such as task 

allocation, path planning, conflict resolution, and 

real-time adjustments. 

Multi-agent path planning is generally 

defined as the process in which n disk-shaped 

agents navigate from their respective starting 

positions to target positions within a shared area 

while avoiding inter-agent collisions [5]. Path 

execution involves handling unexpected events 

during agent movement [6]. Performance metrics 

for this process include planning time, makespan, 

sum of costs (SOC), and success rate [7]. 

This paper aims to survey current methods 

in multi-agent path planning, clarifying the state-

of-the-art technical solutions in this field. 

 

II. MULTI-AGENT PATH 

PLANNING ALGORITHMS 
Multi-agent path planning methods are 

primarily categorized into two types: centralized 

and distributed planning. Distributed planning 

assumes that each agent possesses its own 

computing and communication capabilities. 

Centralized planning, on the other hand, assumes 

the existence of a single computing platform with 

complete information and reliable bidirectional 

communication with all agents. 

 

a) Centralized Path Planning Methods 

Centralized planning methods utilize a 

central controller to gather global information and 

make unified decisions. Mainstream centralized 

approaches include conflict-based search (CBS) [8] 

algorithms, rule-based algorithms [9], priority-

based algorithms [10], numerical optimization-

based algorithms [11], and their variants. These 

methods typically guarantee globally optimal or 

near-optimal solutions. 

However, finding solutions that minimize 

total arrival time, makespan, or overall cost is an 

NP-hard problem [5]. Moreover, optimality in both 

makespan and total arrival time cannot always be 

achieved simultaneously [12]. The field of artificial 

intelligence has proposed alternative cost metrics 

for evaluating solutions. For instance, LaValle & 

Hutchinson [13] employed a set of independent 

cost metrics (one for each agent) rather than a 

single scalar value. 
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b) Distributed Path Planning Methods 

Distributed methods achieve collaborative 

decision-making through local interactions, with 

each agent independently planning its path. This 

approach leverages agents' sensing and decision-

making capabilities, reducing the computational 

burden on central servers but requiring higher 

communication stability. 

The Amazon Kiva warehouse system [14] 

implements an improved Contract Net Protocol 

(CNP) for this purpose. Several studies have 

explored distributed optimization techniques for 

path planning.  

Recent advances in  learning have 

significantly advanced distributed path planning 

research. Studies have proposed reinforcement 

learning-based distributed algorithms that enhance 

system efficiency and robustness through local 

interactions and learning among agents [15-17]. 

Distributed path planning methods offer 

excellent scalability and robustness but may 

converge to local optima. 

 
III. COMPARISON of CENTRALIZED 

and DISTRIBUTED PATH 

PALNNING 
Centralized and distributed path planning 

represent two fundamental paradigms in multi-

agent systems, exhibiting significant differences in 

architecture and application scenarios. 

Centralized and distributed path planning 

represent two fundamental paradigms in multi-

agent systems, exhibiting significant differences in 

architecture and application scenarios. 

Centralized planning employs a central 

control architecture, relying on global information 

for unified optimization. It is particularly suited for 

high-precision, safety-critical scenarios. While 

capable of delivering globally optimal solutions—

making it ideal for applications like air traffic 

control and UAV formation displays—this method 

suffers from exponentially increasing 

computational complexity with the number of 

agents and carries single-point-of-failure risks. 

In contrast, distributed planning is based 

on local perception and autonomous decision-

making, utilizing approaches such as market 

auctions, multi-agent reinforcement learning , or 

distributed optimization  for coordination. Research 

from ETH Zurich [18] demonstrates that 200 

UAVs can achieve conflict resolution through 

distributed negotiation in just 150ms, with 

communication overhead as low as 5KB/s—

significantly lower than centralized solutions. 

Reinforcement learning methods (e.g., MA-PPO 

[19]) endow systems with dynamic adaptability, 

performing exceptionally well in unknown 

environments. However, distributed planning 

typically converges to local optima, with collision 

probabilities potentially rising to 2-3% in dense 

scenarios. Additionally, learning-based methods 

require substantial training costs, often needing 

millions of samples to achieve stable convergence. 

 

IV. CONCLUSION 
In practical applications, both centralized 

and distributed path planning have their respective 

domains of suitability. Safety-critical scenarios 

(e.g., air traffic control) favor centralized 

approaches, while large-scale dynamic systems 

(e.g., warehouse logistics) are better served by 

distributed methods. The emerging trend points 

toward hybrid architectures, such as DARPA's 

hierarchical system that combines centralized task 

allocation with distributed real-time obstacle 

avoidance. This approach improves task 

completion rates by 40% while maintaining low 

latency. The integration of 5G and edge computing 

technologies is expected to further advance this 

paradigm for ultra-large-scale deployments. 

In conclusion, this comprehensive survey 

provides valuable insights for researchers and 

practitioners in selecting and developing 

appropriate path planning strategies for multi-agent 

collaborative systems. 
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