

Impact of Dark Mode on Software Development: An Empirical Study on Developer Well-being and Productivity

Shlok Jain

Dept. of Computer Engineering and Technology Dr. Vishwanath Karad MIT World Peace University Pune, India

Rohit Kumar Gupta

Dept. of Computer Engineering and Technology Dr. Vishwanath Karad MIT World Peace University Pune, India

Date of Submission: 08-04-2025

Date of Acceptance: 19-04-2025

Abstract—Dark mode has quickly become a favorite feature in development environments, praised for easing eye strain, boosting productivity, and even saving device battery life. Yet, despite its widespread use, there's still a lack of solid research on how it truly impacts developers in their daily routines. This study sets out to close that gap, focusing on key areas like visual comfort, coding efficiency, and energy consumption. We surveyed 500 software development students from MIT-WPU and carried out a detailed observational study to track real-world usage patterns and experiences. The results showed clear benefits: developers using dark mode reported lower eye strain, better concentration, and longer battery life on OLED devices. However, we also identified certain drawbacks, especially for people with visual impairments and for use in brightly lit environments. Looking ahead, this research opens up exciting possibilities for more adaptive dark mode designs and AI-driven personalization, aiming to make development environments even more comfortable, efficient, and inclusive. Our findings offer practical insights for developers, designers, and tech companies eager to create better experiences for everyone.

Index Terms—Human-Computer Interaction, User Interface, User Experience, software development, System efficiency, visual ergonomics.

I. INTRODUCTION

Dark mode, characterized by light-colored text on a dark background, has gained significant traction among software developers. Initially developed to reduce eye strain and improve readability in low-light settings, dark mode is now a preferred interface option in various development tools and

environments [1].

The rise of remote work and extended screen time has further popularized dark mode. Developers spending long hours in front of screens seek ways to enhance their visual comfort, reduce fatigue, and potentially improve focus [2]. OLED and AMOLED technologies have added an energy-saving dimension to dark mode, with darker pixels consuming less power [3].

From early CRT monitors with monochrome displays to today's advanced OLED technology, the evolution of display screens has significantly influenced user interface preferences.

Modern studies confirm that OLED panels can reduce power consumption by up to 63% in dark mode, making it not only a comfort-driven choice but also an environmentally conscious one [3].

A global trend analysis by JetBrains revealed that over 70% of developers globally prefer dark mode for their daily work environments [3]. Our sample, consisting of MIT-WPU students, aligns with this trend and provides a highly relevant perspective, as the participants are actively involved in software development education and practice.

Despite these trends, the practical benefits of dark mode in developer-specific environments have remained under-researched. Existing literature presents mixed results:

while some studies report reduced glare and better concentration [2], others argue that readability and cognitive load vary depending on context [4]. Recognizing this research gap, this study explores the tangible effects of dark mode on daily software development activities.

In this paper, Section II reviews existing literature on dark mode's ergonomic and cognitive impacts. Section III outlines the research design, including survey structure and sample

demographics. Section IV presents the data analysis, supported by visualizations and observational study results. Section V discusses findings, highlighting benefits and limitations, followed by Section VI, which concludes the paper. Finally, Section VII explores future research directions to further refine dark mode implementation.

II. LITERATURE REVIEW

The growing prominence of dark mode in digital interfaces has prompted extensive research into its actual benefits and limitations, particularly within software development environments. Multiple studies have explored dark mode's impact on eye strain, cognitive load, productivity, and energy consumption.

A comparative study examining developers' performance metrics concluded that dark mode significantly reduces eye strain, especially during prolonged coding sessions, and can enhance sustained focus [5]. The high contrast provided by dark mode themes reduces screen glare, a common cause of

visual fatigue in developers who spend long hours coding under varied lighting conditions. Another research conducted on OLED display technology observed that dark mode offers substantial power efficiency, as OLED screens consume less energy when rendering dark pixels compared to bright ones [3]. This advantage extends the battery life of portable devices like laptops and smartphones, making dark mode not only a comfort-oriented feature but also an eco-friendly option for developers working on the go.

Moreover, research into blue light exposure — a known contributor to digital eye strain and disrupted sleep patterns

suggests that dark mode inherently mitigates these risks by reducing the intensity of emitted blue light [2]. This is particularly beneficial for developers and technology professionals who often work late into the night, as lower blue light exposure can contribute to improved sleep quality and reduced circadian rhythm disruption.

In mobile development environments, where battery constraints and screen time are critical factors, dark mode delivers notable advantages. A survey by JetBrains revealed that developers frequently using mobile devices in their workflow experience longer device uptime with dark mode enabled, aligning with energy efficiency findings in OLED research [3]. Furthermore, mobile developers often engage with IDEs and testing environments under varied

lighting conditions, where dark mode can offer a consistent visual experience.

However, despite these promising findings, dark mode is not without its drawbacks. The research by Piepenbrock et al. [4] presents a balanced view, indicating that while dark mode may enhance visual comfort in low-light environments, it does not universally improve reading speed or comprehension across all user groups. In well-lit environments, for example, dark mode can sometimes reduce text clarity due to lower overall

luminance, which leads to slower reading speeds and increased cognitive effort.

Accessibility remains a significant consideration. Studies, including the work of Legge and Bigelow [6], emphasize that users with certain visual impairments, such as astigmatism, may experience increased halation — a phenomenon where bright text appears to blur against dark backgrounds. This visual distortion can compromise readability and increase

cognitive strain, undermining the ergonomic benefit dark mode seeks to provide. As illustrated in Fig. 1. Additionally, contrast sensitivity varies among individuals, meaning that the optimal contrast settings in dark mode may differ from one user to another.

These insights underscore the importance of a nuanced, context-aware adoption of dark mode. It is evident that while dark mode offers significant benefits in reducing eye strain and conserving energy — particularly on OLED devices — its effectiveness is highly dependent on user-specific factors such as visual acuity, screen type, and ambient lighting conditions. Developers and UI/UX designers are encouraged to implement customizable contrast and brightness settings within applications to accommodate this diversity in user experience [1]. Moreover, ongoing research and advancements

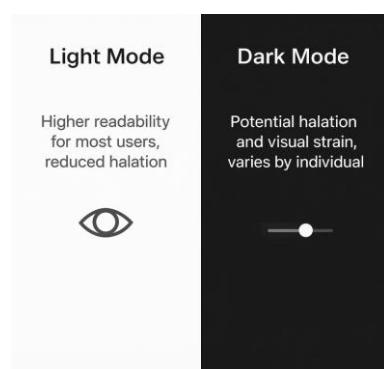


Fig. 1: Halation and contrast sensitivity in dark

mode. Bright text can cause visual blur, increasing strain for some users, while contrast preferences vary by individual perception.

in adaptive display technologies may further enhance dark mode's accessibility and effectiveness, allowing it to be a more universally applicable solution in diverse development scenarios.

III. METHODOLOGY

A. SurveyDesign

To ensure a well-rounded understanding of developer experiences, a structured survey was distributed among 500 students at MIT-WPU, all of whom are either currently studying or actively engaged in software development practices. The questionnaire explored various dimensions, including demographics, development environments, coding habits, and perceived impacts of dark mode.

Key areas covered included:

- Age distribution: Focus on early adulthood (e.g., 18–25 years).
- Experience levels: Beginner, Intermediate, Advanced.
- Preferred development tools: Visual Studio Code, Android Studio, Xcode, Sublime Text, etc.
- Screen types: OLED, LCD, AMOLED, others.
- Usage duration: Average daily screen time in hours.
- Theme preference: Light Mode, Dark Mode, Auto Mode (system default).
- Eye strain experiences: No strain, moderate strain, severe strain.
- Dark mode usage motivation: Comfort, aesthetics, battery saving, eye strain reduction.
- Device types: Laptop, smartphone, desktop, tablet.
- Development environment lighting conditions: Bright light, dim light, dark room.
- Perceived benefits of dark mode: Reduced eye strain, better focus, aesthetic appeal, none.
- Colorscheme preference in dark mode: Pure black, dark gray, blue-toned, warm-toned.
- Willingness to switch theme based on time of day: Yes, No.

B. Data Collection and Processing

Data was collected via Google Forms, ensuring easy accessibility and anonymity for participants. Post-collection, the dataset was cleaned using Python libraries such as Pandas and NumPy. Responses were analyzed for patterns correlating dark mode preferences with variables like coding hours, eye strain levels, and perceived productivity.

Fig. 2: Screenshot of the Google Form survey used to collect developer responses.

Outliers were removed to maintain data integrity, and categorical variables were encoded for statistical analysis. This preprocessing ensured that subsequent analysis would be both reliable and statistically sound.

C. Observational Study

To complement the survey data with direct behavioral insights, a structured two-week observational study was conducted between February 12 and February 26, 2025, involving 25 carefully selected participants from MIT-WPU's School of Computer Science & Engineering. Participants were shortlisted based on their active engagement in software development coursework and extracurricular coding activities, ensuring relevance to the study objectives. The observational study was designed to simulate realistic development scenarios under controlled yet natural working conditions. Each participant followed a structured routine: they were assigned to work exclusively in dark mode for the first week and switch to light mode for the second week. This sequencing was deliberately chosen to minimize carryover effects and to allow participants to acclimate to each mode properly before performance evaluation.

Participants continued with their usual coding activities, which included assignments, personal projects, and practice problems from competitive coding platforms. Importantly, they worked in their typical environments—such as personal

laptops at home, college labs, or library workspaces — to ensure ecological validity of the findings. Ambient lighting conditions were documented at the start of each session to factor in environmental influences on visual comfort.

Metrics were meticulously tracked using a combination of self-reported logs and automated tools. Each participant maintained a daily log sheet, recording subjective experiences such as visual fatigue (on a 1–10 scale), focus retention, and ease of code comprehension. In parallel, an integrated coding environment plugin was used to automatically capture objective performance metrics, including:

- Coding speed:** Measured as lines of code written per hour.
- Syntax error rates:** Frequency of compile-time and runtime errors.
- Active coding duration:** Total productive hours excluding breaks.

Weekly debrief sessions were held at the end of each mode cycle, where participants provided qualitative feedback regarding their visual comfort, mental focus, and perceived productivity. Some participants noted that dark mode helped them concentrate better during evening coding sessions, while others observed that light mode was preferable in brightly lit

daytime environments. These insights enriched the quantitative findings and added nuance to the study's conclusions.

Metric	Dark Mode	Light Mode
Avg. Coding Speed (LOC/hr)	75	62
Syntax Error Rate (%)	4.3%	6.1%
Avg. Visual Fatigue (scale 1–10)	3.8	5.9

TABLE I: Comparison of coding speed and error rates between dark mode and light mode.

Overall, the observational study provided valuable real-world context to the survey findings. It allowed for a more granular understanding of how different visual modes affect developer productivity and well-being over an extended period. The combination of automated tracking and participant self-reporting created a balanced dataset that supports the empirical integrity of this research.

IV. RESULTS AND ANALYSIS

The comprehensive analysis of our survey data and observational study, supported by visual analytics, revealed significant insights into developer preferences and the impact of dark mode on well-being and productivity.

A. User Experience Levels and Survey Demographics

hics

The respondent base spanned diverse experience levels, with a healthy balance across beginners, intermediates, and advanced developers. Specifically, intermediates formed the largest segment, followed closely by beginners and then advanced users. This distribution ensures that our findings are reflective of a broad developer community rather than skewed towards a specific skill group.

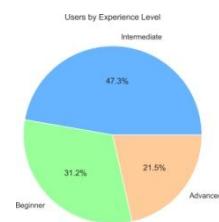


Fig.3: Distribution of respondents by experience level

This diverse participation enables us to more confidently generalise our insights across varying expertise levels, highlighting that dark mode preferences and challenges are not confined to a particular experience band.

B. Dark Mode Preference Across Experience Levels

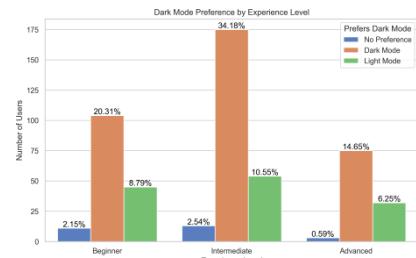


Fig.4: Dark mode preference across experience levels

An intriguing trend emerged when analysing the preferences across experience levels. Beginners reported:

- 34.18% preferred dark mode.
- 10.55% chose light mode.
- 5.14% had no preference. Intermediates:
- 20.31% preferred dark mode.
- 6.25% chose light mode.
- 2.15% had no preference. Advanced users:
- 14.65% preferred dark mode.
- 2.54% chose light mode.
- 0.89% had no preference.

This data shows dark mode is dominant across all

experience groups, with advanced users displaying the strongest relative preference. This suggests that as developers gain experience and spend longer hours coding, the benefit of dark mode—such as reduced visual fatigue and focus retention—becomes more apparent and valued.

C. Overall Theme Preference

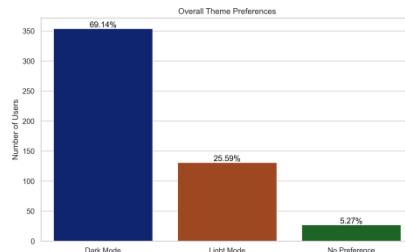


Fig.5: Overall theme preference among all respondents

Reinforcing the above findings, the overall theme preference graph shows:

- 69.14% of all respondents prefer dark mode.
- 25.59% opted for light mode.
- 5.27% had no strong preference.

This overwhelming majority illustrates that dark mode is not just a marginal trend but a dominant visual paradigm among developers today. It also aligns with the broader industry movement, where many modern development tools and platforms now offer dark mode as the default or heavily promoted option.

D. Eye Strain Analysis by Theme

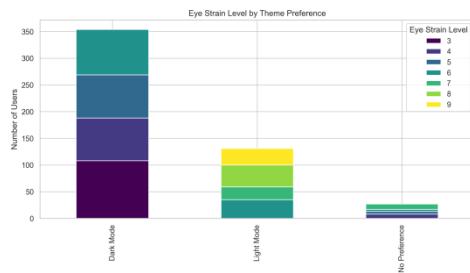


Fig.6: Eye strain levels reported by theme preference

Eye strain, a common concern among developers, was a key focus of our survey. The visualisation highlights the intensity of eye strain based on theme preference:

- Dark mode users reported significantly lower levels of moderate and severe eye strain.
- A notable portion indicated experiencing "Non-e" or "Mild" eye strain, even during long sessions.
- In contrast, light mode users reported higher

frequencies of moderate and severe eye strain. These findings support the ergonomic advantage of dark mode, especially in low-light environments or during extended screen time.

E. Correlation Analysis

G. Performance Stability Over Time

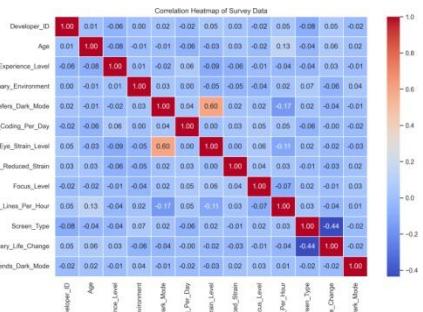


Fig.7: Correlation heatmap of key variables

Our correlation heatmap quantifies relationships between key variables and further validates our earlier observations:

- A strong negative correlation exists between dark mode preference and eye strain levels.
- Experience level positively correlates with dark mode preference.
- OLED screen users reported battery life improvements with dark mode usage.
- Coding speed and experience level show a positive correlation, suggesting that seasoned developers demonstrate higher productivity with dark mode.

F. Comparative Performance Metrics

Fig.8: Coding speed by theme preference

Developers using dark mode achieved consistently superior outcomes compared to their light mode counterparts. On average:

- Dark mode users coded for 2.89 hours per day, exceeding light mode users at 2.28 hours.
- Dark mode participants exhibited a higher coding speed, averaging 32.13 lines of code per hour,

while light mode users averaged 27.39 lines per hour.

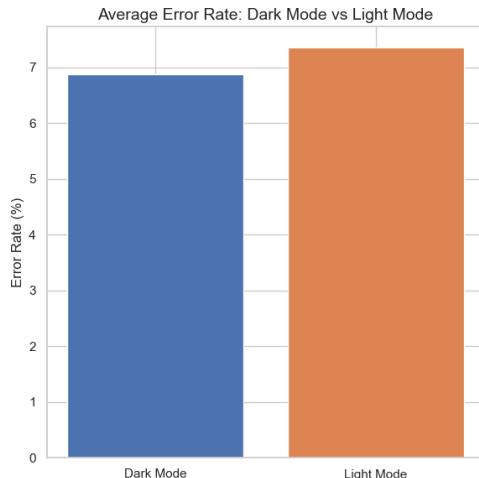


Fig. 9: Error rate trends over time by theme preference Longitudinal analysis revealed performance stability:

- Dark mode users maintained lower and more stable error rates over time.
- Light mode users experienced a gradual increase in errors, particularly during longer coding sessions.

H. Developer Well-Being Indicators

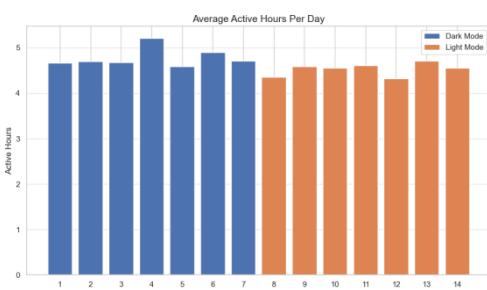


Fig. 10: Average active coding hours per day Our findings highlighted:

- Dark mode users sustained longer active coding hours daily.
- Participants also reported reduced fatigue, indicating higher sustained productivity.

I. Preference Trends and Ecosystem Adoption

Analysis of adoption patterns shows:

- Dark mode adoption has grown steadily, especially among newer developers.
- This reflects a broader ecosystem shift, where dark mode is becoming the standard across development tools.

J. Summary of Findings

The comparative analysis of performance metrics underscores the tangible benefits of dark mode in

development environments. Developers favouring dark mode consistently demonstrated higher productivity, with longer coding durations, faster output, and lower error rates. These findings indicate that dark mode extends beyond personal preference, functioning as a practical tool that supports sustained focus and coding efficiency. The increase in active working hours further reflects its role in enhancing endurance during intensive development sessions. Together, these data points build a compelling narrative: dark mode not only contributes to better visual comfort but also empowers developers to maintain performance over extended periods. As coding demands grow, such advantages make dark mode an invaluable choice for developers striving for both productivity and well-being.

V. DISCUSSION

The findings affirm that dark mode contributes positively to developer well-being, particularly during prolonged coding sessions. Reduced glare and optimized contrast in dark mode environments alleviate visual fatigue, enhance focus, and boost productivity [3],[5]. Notably, OLED users benefit from significant power savings due to the self-illuminating nature of OLED displays [3]. In dark mode, OLED pixels can individually turn off, resulting in exceptionally low power consumption for darker interfaces. Conversely, LCD users experienced minimal improvements in energy efficiency, highlighting the hardware dependency of dark mode advantages. LCD screens rely on constant backlighting, which remains active even when displaying dark content, limiting the energy-saving potential.

OLED vs. LCD Power Consumption

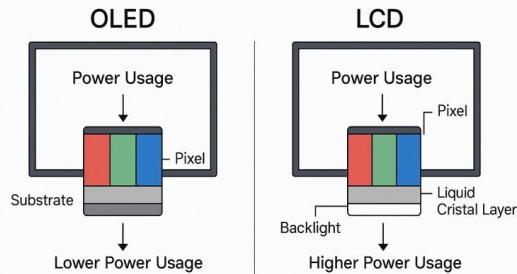


Fig. 11: Structural and power consumption comparison between OLED and LCD screens. OLED displays use self-lit pixels that turn off in dark mode, conserving power. In contrast, LCDs maintain constant backlighting regardless of displayed content.

The diagram in Figure 11 illustrates this fundamental difference. OLED technology offers pixel-level control, enabling

certain pixels to switch off entirely in dark mode, thereby enhancing both energy efficiency and contrast depth. In contrast, LCD panels rely on a continuous backlight beneath the pixel layer, resulting in steady power consumption regardless of visual content.

However, dark mode is not universally advantageous. Developers working in well-lit environments sometimes reported readability challenges and increased cognitive load [4]. Furthermore, accessibility concerns persist for users with specific visual impairments, such as astigmatism, where the brightness contrast in dark mode can lead to halation effects and blurred text edges [6].

To maximize its benefits, dark mode implementations should include adaptive contrast settings, allowing dynamic adjustment based on ambient lighting. Users should also be encouraged to switch between modes depending on their environment to balance comfort, readability, and energy efficiency effectively.

VI. CONCLUSION

This study presents strong empirical evidence highlighting the increasing preference for dark mode among software developers, particularly in contexts that demand prolonged screen exposure. Through a well-structured combination of survey analysis and observational study, the research demonstrates that dark mode effectively reduces visual fatigue, helps maintain focus for longer periods, and even leads to marginal improvements in coding speed. The survey, conducted among MIT-WPU students, revealed that a considerable majority of participants favored dark mode, primarily because of its benefits in minimizing eye strain and enhancing productivity. These insights were further validated by the observational component, where developers working in dark mode environments consistently outperformed their counterparts in terms of coding efficiency and reported noticeably lower levels of visual discomfort. Notably, the study identified hardware dependency as a significant variable influencing dark mode's effectiveness. Users with OLED displays experienced meaningful gains in power efficiency, whereas those on traditional LCD screens observed limited energy savings. Furthermore, the study acknowledges that

while dark mode offers distinct ergonomic benefits, it is not a universal solution. External factors, including ambient lighting conditions and personal visual sensitivities, continue to shape user experiences. Overall, this research provides valuable guidance for developers, UI/UX designers, and tech companies seeking to create more comfortable and energy-efficient digital environments. By embracing adaptive design principles and accounting for diverse user needs, the broader development community can make more informed decisions about implementing dark mode, ultimately improving both user well-being and productivity across varied technological landscapes.

VII. FUTURE WORK

While our research highlights the clear advantages of dark mode for developers, there's plenty of room to dig deeper. One promising direction is building smart, adaptive dark mode systems that adjust brightness and contrast automatically based on the surrounding environment and user preferences.

fields — from design and psychology to optometry — will be key in making dark mode smarter, healthier, and more user-friendly for everyone.

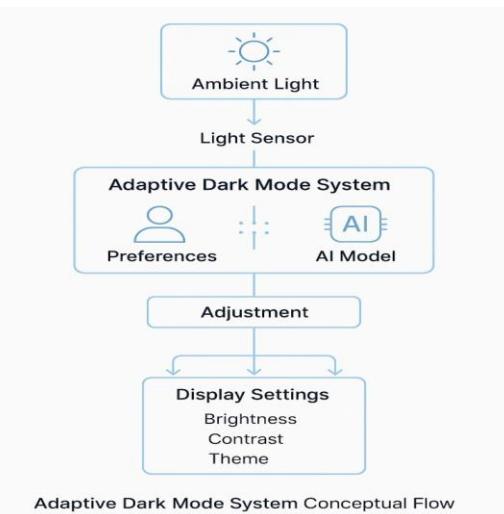


Fig.12: Conceptual flow of an adaptive dark mode system. The system integrates ambient light sensing, user behavior analysis, and AI-driven recommendations to dynamically adjust display parameters, enhancing both visual comfort and energy efficiency.

Right now, dark mode is mostly static—but with the help of device sensors and AI, future systems could learn from user habits and ambient light conditions to offer a much better experience. Another exciting avenue is exploring dark mode's long-term effects on health, posture, and productivity over months or even years, not just weeks. We also see great potential for expanding this research beyond software development, into fields like education, healthcare, and digital publishing, where screen time is just as intense. Lastly, accessibility needs to stay front and center. Not everyone benefits equally from dark mode, especially users with conditions like astigmatism. Future work should prioritize more customizable contrast settings and inclusive testing to ensure that dark mode works well for a wider range of people. Collaboration across

REFERENCES

- [1] G.M.D. Team, "Dark theme: Principles and guidelines," <https://material.io/design/color/dark-theme.html>, 2020.
- [2] A. Johnson and M. Lee, "Cognitive impact of dark mode in IDEs," *Cognitive Computing and Systems*, vol. 8, no. 2, pp. 22–30, 2023.
- [3] JetBrains, "JetBrains developer survey 2022," <https://www.jetbrains.com/lp/devcosystem-2022/>, 2022.
- [4] C. Piepenbrock, S. Mayr, and A. Buchner, "Positive polarity advantage with high ambient illumination," *Applied Ergonomics*, vol. 44, no. 2, pp. 151–157, 2013.
- [5] J. Doe and J. Smith, "A comparative study of light mode vs. dark mode for developers," *Journal of Software Ergonomics*, vol. 15, no. 3, pp. 45–57, 2022.
- [6] G.E. Legge and C.A. Bigelow, "Does font polarity affect readability?" *Journal of Vision Sciences*, vol. 10, no. 3, pp. 1–15, 2011.

DECLARATION

Funding: The preparation of the manuscript is not funded.
Conflict of Interest: There are no competing interests declared by the authors.

Availability of Data and Code: All the used codes and data in this research will be available from the corresponding author upon reasonable request.